List of publications using FB Reagents products

Hiller, S., Garces, R. G., Malia, T. J., Orekhov, V. Y., Colombini, M., & Wagner, G. (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science, 321(5893), 1206-1210.Hiller, S., Ibraghimov, I., Wagner, G., & Orekhov, V. Y. (2009). Coupled decomposition of four-dimensional NOESY spectra. Journal of the American Chemical Society, 131(36), 12970-12978.Hiller, S., Malia, T. J., Garces, R. G., Orekhov, V. Y., & Wagner, G. (2010). Backbone and ILV side chain methyl group assignments of the integral human membrane protein VDAC-1. Biomolecular NMR assignments, 4, 29-32.Yu, T. Y., Raschle, T., Hiller, S., & Wagner, G. (2012). Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(6), 1562-1569.Bayrhuber, M., Maslennikov, I., Kwiatkowski, W., Sobol, A., Wierschem, C., Eichmann, C., ... & Riek, R. (2019). Nuclear magnetic resonance solution structure and functional behavior of the human proton channel. Biochemistry, 58(39), 4017-4027.Eddy, M. T., Yu, T. Y., Wagner, G., & Griffin, R. G. (2019). Structural characterization of the human membrane protein VDAC2 in lipid bilayers by MAS NMR. Journal of biomolecular NMR, 73(8), 451-460.Böhm, R., Amodeo, G. F., Murlidaran, S., Chavali, S., Wagner, G., Winterhalter, M., ... & Hiller, S. (2020). The structural basis for low conductance in the membrane protein VDAC upon β-NADH binding and voltage gating. Structure, 28(2), 206-214.Günsel, U., Klöpfer, K., Häusler, E., Hitzenberger, M., Bölter, B., Sperl, L. E., ... & Hagn, F. (2023). Structural basis of metabolite transport by the chloroplast outer envelope channel OEP21. Nature Structural & Molecular Biology, 30(6), 761-769. Hagn, F., Etzkorn, M., Raschle, T., & Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. Journal of the American Chemical Society, 135(5), 1919-1925.Hagn, F., & Wagner, G. (2015). Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. Journal of biomolecular NMR, 61, 249-260.Bibow, S., Polyhach, Y., Eichmann, C., Chi, C. N., Kowal, J., Albiez, S., ... & Riek, R. (2017). Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein AI. Nature structural & molecular biology, 24(2), 187-193.Cuevas Arenas, R., Danielczak, B., Martel, A., Porcar, L., Breyton, C., Ebel, C., & Keller, S. (2017). Fast collisional lipid transfer among polymer-bounded nanodiscs. Scientific reports, 7(1), 45875.Hagn, F., Nasr, M. L., & Wagner, G. (2018). Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nature protocols, 13(1), 79-98.Bibow, S. (2019). Opportunities and challenges of backbone, sidechain, and RDC experiments to study membrane protein dynamics in a detergent-free lipid environment using solution state NMR. Frontiers in molecular biosciences, 6, 103.Schuster, M., Deluigi, M., Pantić, M., Vacca, S., Baumann, C., Scott, D. J., ... & Zerbe, O. (2020). Optimizing the α1B-adrenergic receptor for solution NMR studies. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(10), 183354.Piai, A., Fu, Q., Cai, Y., Ghantous, F., Xiao, T., Shaik, M. M., ... & Chou, J. J. (2020). Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nature communications, 11(1), 2317.Bibow, S., Böhm, R., Modaresi, S. M., & Hiller, S. (2020). Detergent titration as an efficient method for NMR resonance assignments of membrane proteins in lipid–bilayer nanodiscs. Analytical chemistry, 92(11), 7786-7793.Gaussmann, S., Gopalswamy, M., Eberhardt, M., Reuter, M., Zou, P., Schliebs, W., ... & Sattler, M. (2021). Membrane interactions of the peroxisomal proteins PEX5 and PEX14. Frontiers in Cell and Developmental Biology, 9, 651449.Daniilidis, M., Brandl, M. J., & Hagn, F. (2022). The advanced properties of circularized MSP nanodiscs facilitate high-resolution NMR studies of membrane proteins. Journal of Molecular Biology, 434(24), 167861.Daniilidis, M., Brandl, M. J., & Hagn, F. (2022). The advanced properties of circularized MSP nanodiscs facilitate high-resolution NMR studies of membrane proteins. Journal of Molecular Biology, 434(24), 167861. Hagn, F., Etzkorn, M., Raschle, T., & Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. Journal of the American Chemical Society, 135(5), 1919-1925.Hagn, F., & Wagner, G. (2015). Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. Journal of biomolecular NMR, 61, 249-260.Hagn, F., Nasr, M. L., & Wagner, G. (2018). Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nature protocols, 13(1), 79-98.Schuster, M., Deluigi, M., Pantić, M., Vacca, S., Baumann, C., Scott, D. J., ... & Zerbe, O. (2020). Optimizing the α1B-adrenergic receptor for solution NMR studies. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(10), 183354.Gaussmann, S., Gopalswamy, M., Eberhardt, M., Reuter, M., Zou, P., Schliebs, W., ... & Sattler, M. (2021). Membrane interactions of the peroxisomal proteins PEX5 and PEX14. Frontiers in Cell and Developmental Biology, 9, 651449.Daniilidis, M., Brandl, M. J., & Hagn, F. (2022). The advanced properties of circularized MSP nanodiscs facilitate high-resolution NMR studies of membrane proteins. Journal of Molecular Biology, 434(24), 167861. Motlaq, V. F., Adlmann, F. A., Hernández, V. A., Vorobiev, A., Wolff, M., & Bergström, L. M. (2022). Dissolution mechanism of supported phospholipid bilayer in the presence of amphiphilic drug investigated by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1864(10), 183976.Scheidt, H. A., Kolocaj, K., Konrad, D. B., Frank, J. A., Trauner, D., Langosch, D., & Huster, D. (2020). Light-induced lipid mixing implies a causal role of lipid splay in membrane fusion. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(11), 183438. Laguerre, A., Löhr, F., Henrich, E., Hoffmann, B., Abdul-Manan, N., Connolly, P. J., ... & Dötsch, V. (2016). From nanodiscs to isotropic bicelles: a procedure for solution nuclear magnetic resonance studies of detergent-sensitive integral membrane proteins. Structure, 24(10), 1830-1841.Piai, A., Fu, Q., Cai, Y., Ghantous, F., Xiao, T., Shaik, M. M., ... & Chou, J. J. (2020). Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nature communications, 11(1), 2317. Bugge, K., Papaleo, E., Haxholm, G. W., Hopper, J. T., Robinson, C. V., Olsen, J. G., ... & Kragelund, B. B. (2016). A combined computational and structural model of the full-length human prolactin receptor. Nature communications, 7(1), 11578. Mohamadi, M., Goricanec, D., Wagner, G., & Hagn, F. (2023). NMR sample optimization and backbone assignment of a stabilized neurotensin receptor. Journal of structural biology, 215(2), 107970. O’Brien, E. S., Lin, D. W., Fuglestad, B., Stetz, M. A., Gosse, T., Tommos, C., & Wand, A. J. (2018). Improving yields of deuterated, methyl labeled protein by growing in H 2 O. Journal of biomolecular NMR, 71, 263-273. Barbet-Massin, E., Pell, A. J., Retel, J. S., Andreas, L. B., Jaudzems, K., Franks, W. T., ... & Pintacuda, G. (2014). Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. Journal of the American Chemical Society, 136(35), 12489-12497. Stampolaki, Μ., Hoffmann, A., Tekwani, K., Georgiou, K., Tzitzoglaki, C., Ma, C., ... & Kolocouris, A. (2023). A Study of the Activity of Adamantyl Amines against Mutant Influenza A M2 Channels Identified a Polycyclic Cage Amine Triple Blocker, Explored by Molecular Dynamics Simulations and Solid‐State NMR. ChemMedChem, 18(16), e202300182. Andreas, L. B., Reese, M., Eddy, M. T., Gelev, V., Ni, Q. Z., Miller, E. A., ... & Griffin, R. G. (2015). Structure and mechanism of the influenza A M218–60 dimer of dimers. Journal of the American Chemical Society, 137(47), 14877-14886. Movellan, K. T., Wegstroth, M., Overkamp, K., Leonov, A., Becker, S., & Andreas, L. B. (2023). Real-time tracking of drug binding to influenza A M2 reveals a high energy barrier. Journal of Structural Biology: X, 8, 100090. Nimerovsky, E., Movellan, K. T., Zhang, X. C., Forster, M. C., Najbauer, E., Xue, K., ... & Andreas, L. B. (2021). Proton detected solid-state NMR of membrane proteins at 28 Tesla (1.2 GHz) and 100 kHz magic-angle spinning. Biomolecules, 11(5), 752. Stampolaki, M., Varkey, A., Nimerovsky, E., Leonov, A., & Becker, S. (2024). Seeing double: the persistent dimer-of-dimers structure of drug resistant influenza A M2. Baumann, C., Chiang, W. C., Valsecchi, R., Jurt, S., Deluigi, M., Schuster, M., ... & Zerbe, O. (2023). Side‐chain dynamics of the α1B‐adrenergic receptor determined by NMR via methyl relaxation. Protein Science, 32(11), e4801. Toyama, Y., & Shimada, I. (2019). Frequency selective coherence transfer NMR spectroscopy to study the structural dynamics of high molecular weight proteins. Journal of Magnetic Resonance, 304, 62-77. Bumbak, F., Pons, M., Inoue, A., Paniagua, J.C., Yan, F., Wu, H., Robson, S.A., Bathgate, R.A., Scott, D.J., Gooley, P.R. and Ziarek, J.J., 2023. Ligands selectively tune the local and global motions of neurotensin receptor 1 (NTS1). Cell reports, 42(1). Klammt, C., Maslennikov, I., Bayrhuber, M., Eichmann, C., Vajpai, N., Chiu, E. J. C., ... & Choe, S. (2012). Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nature methods, 9(8), 834-839. Brady, J. P., Claridge, J. K., Smith, P. G., & Schnell, J. R. (2015). A conserved amphipathic helix is required for membrane tubule formation by Yop1p. Proceedings of the National Academy of Sciences, 112(7), E639-E648. Taylor, K. C., Kang, P. W., Hou, P., Yang, N. D., Kuenze, G., Smith, J. A., ... & Sanders, C. R. (2020). Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state. Elife, 9, e53901. Brazin, K. N., Mallis, R. J., Li, C., Keskin, D. B., Arthanari, H., Gao, Y., ... & Reinherz, E. L. (2014). Constitutively oxidized CXXC motifs within the CD3 heterodimeric ectodomains of the T cell receptor complex enforce the conformation of juxtaposed segments. Journal of Biological Chemistry, 289(27), 18880-18892. Chadwick, A. C., Jensen, D. R., Hanson, P. J., Lange, P. T., Proudfoot, S. C., Peterson, F. C., ... & Sahoo, D. (2017). NMR structure of the C-terminal transmembrane domain of the HDL receptor, SR-BI, and a functionally relevant leucine zipper motif. Structure, 25(3), 446-457. Brazin, K. N., Mallis, R. J., Boeszoermenyi, A., Feng, Y., Yoshizawa, A., Reche, P. A., ... & Reinherz, E. L. (2018). The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity, 49(5), 829-841. Gross, J. D. et al. A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes. J. Biomol. NMR 2003, 25, 235. Ito, T. et al. Solution structure of human initiation factor eIF2alpha reveals homology to the elongation factor eEF1B. Structure 2004, 12, 1693. Park, S. et al. Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 2005, 13, 995. Reibarkh, M. et al. Identification of individual protein-ligand NOEs in the limit of intermediate exchange. J. Biomol. NMR 2006, 36, 1. Hiller, S. et al. Backbone and ILV side chain methyl group assignments of the integral human membrane protein VDAC-1 J. Biomol. NMR. Nov. 22 2009. Linser, R., Gelev, V., Hagn, F., Arthanari, H., Hyberts, S. G., & Wagner, G. (2014). Selective methyl labeling of eukaryotic membrane proteins using cell-free expression. Journal of the American Chemical Society, 136(32), 11308-11310. De Paula, V. S., Dubey, A., Arthanari, H., & Sgourakis, N. G. (2020). A slow-exchange conformational switch regulates off-target cleavage by high-fidelity Cas9. bioRxiv, 2020-12. Nerli, S., De Paula, V. S., McShan, A. C., & Sgourakis, N. G. (2021). Backbone-independent NMR resonance assignments of methyl probes in large proteins. Nature communications, 12(1), 691. Dubey, A., Stoyanov, N., Viennet, T., Chhabra, S., Elter, S., Borggräfe, J., ... & Arthanari, H. (2021). Local deuteration enables NMR observation of methyl groups in proteins from eukaryotic and cell‐free expression systems. Angewandte Chemie International Edition, 60(25), 13783-13787. Mallis, R. J., Lee, J. J., Berg, A. V. D., Brazin, K. N., Viennet, T., Zmuda, J., ... & Arthanari, H. (2024). Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT‐cell and T‐cell receptor protein. Protein Science, 33(4), e4950. Boeszoermenyi, A., Chhabra, S., Dubey, A., Radeva, D. L., Burdzhiev, N. T., Chanev, C. D., ... & Arthanari, H. (2019). Aromatic 19F-13C TROSY: a background-free approach to probe biomolecular structure, function, and dynamics. Nature methods, 16(4), 333-340.